2x+1x^2-3=2x+3

Simple and best practice solution for 2x+1x^2-3=2x+3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x+1x^2-3=2x+3 equation:



2x+1x^2-3=2x+3
We move all terms to the left:
2x+1x^2-3-(2x+3)=0
We add all the numbers together, and all the variables
x^2+2x-(2x+3)-3=0
We get rid of parentheses
x^2+2x-2x-3-3=0
We add all the numbers together, and all the variables
x^2-6=0
a = 1; b = 0; c = -6;
Δ = b2-4ac
Δ = 02-4·1·(-6)
Δ = 24
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{24}=\sqrt{4*6}=\sqrt{4}*\sqrt{6}=2\sqrt{6}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{6}}{2*1}=\frac{0-2\sqrt{6}}{2} =-\frac{2\sqrt{6}}{2} =-\sqrt{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{6}}{2*1}=\frac{0+2\sqrt{6}}{2} =\frac{2\sqrt{6}}{2} =\sqrt{6} $

See similar equations:

| c+11c+–c+–6c+–12c=7 | | 9(c-2)+8=5+c-15 | | 17=y/4-11 | | -56+6k=k-3k | | 5x-2=-12+5x | | -8x+6(x-3)=-24 | | x=√576 | | 0=5s+4s | | 3x-295=3496 | | -8=-2d-2d | | 70-7.42x=47.74 | | -15=4o+o | | -20=8(x+2)-2x | | 4y-4=-6+y | | 3=-2k-k | | -5=2d+3d | | 9(5w-2)=27 | | 6-3r=10 | | 3=6+x/9 | | 2=x/3-15 | | 1,269=27(p+20) | | .(1/4)(x−3)=5−x | | 4m+28=0 | | -2/3x+41/2=6 | | 8(-8w-52)=32 | | 67.9=7(m+2.9) | | 7=5d+2d | | -11x-4=-5x+14 | | 12x-3=(x-1)=5x+4(3x-3) | | k=18/20 | | (2x-3)^2=x^2 | | 2x+2x+47=59 |

Equations solver categories